
Porting the NAS-NPB

Conjugate Gradient

Benchmark to CUDA

NVIDIA Corporation

Outline

Overview of CG benchmark

Overview of CUDA Libraries

CUSPARSE

CUBLAS

Porting Sequence

Algorithm Analysis

Data/Code Analysis

This porting approach

uses CUDA Libraries

exclusively. (We will

not write any kernels

or device code.)

Written by NASA in 1994 to help benchmark and prove out parallel coding

methodologies and architectures.

Suite of benchmarks:

Integer Sort

Conjugate Gradient

CFD

FFT

And others…

Come in several flavors

Serial

OpenMP

Have been modified/update/added to by others (e.g. OpenCL)

NPB Benchmarks

Each benchmark includes several different problem sizes called “CLASS”es –

e.g. A (small), B (medium), C (large), etc.

Some were originally written in Fortran (e.g. CG), some in C (e.g. IS)

Source: http://www.nas.nasa.gov/publications/npb.html

Original Whitepaper:

http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf

SNU-NPB (Seoul National University) Update:

All are re-written in C

Added some OpenCL versions

http://aces.snu.ac.kr/Center_for_Manycore_Programming/SNU_NPB_Suite.html

NPB Benchmarks

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://aces.snu.ac.kr/Center_for_Manycore_Programming/SNU_NPB_Suite.html
http://aces.snu.ac.kr/Center_for_Manycore_Programming/SNU_NPB_Suite.html

“A conjugate gradient method is used to compute an approximation to the

smallest eigenvalue of a large sparse symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in that it tests irregular

long distance communication employing unstructured matrix vector

multiplication.”

Uses a variety of dense vector algebra, and sparse matrix-dense vector

algebra (SpMV)

Original code written in Fortran, uses no libraries or other high level

constructs. (We will work with the C translation created by SNU, there is no

functional difference.)

We will use CUBLAS for the dense vector algebra, and CUSPARSE for the

sparse matrix – dense vector algebra.

CG (Conjugate Gradient Solver) Benchmark

A Linear Algebra library which duplicates many functions from the well-

known BLAS (Basic Linear Algebra Subprograms) libraries for performing

dense vector and matrix algebra.

Automatically uses the GPU, and (generally) requires that the data be

explicitly managed: Data must be resident on the GPU before the CUBLAS

function (e.g. DGEMM, DDOT) is invoked.

Most vector or matrix results automatically remain on the GPU, and must be

explicitly moved to the host if needed there.

Some scalar results (e.g. DOT product) can be automatically returned to the

host.

Typical routine naming:

DAXPY= Double precision A times X plus Y (X, Y are vectors, A is scalar)

DDOT = Double precision DOT product

Documentation: http://docs.nvidia.com/cuda/cublas/index.html

What is CUBLAS?

A set of linear algebra subroutines used for handling sparse matrices.

Automatically uses the GPU, and (generally) requires that the data be

explicitly managed: Data must be resident on the GPU before the CUSPARSE

function (e.g. SpMV, SpMM) is invoked.

Most vector or matrix results automatically remain on the GPU, and must be

explicitly moved to the GPU if needed.

Supports several different sparse matrix storage formats:

CSR - Compressed Sparse Row (data , row pointers, column indices)

COO - Coordinate Format (each data element has x,y coordinates)

CSC, ELL, HYB, BSR, etc.

Typical naming

Dcsrspmv= Double precision CSR sparse matrix – dense vector multiply

Documentation: http://docs.nvidia.com/cuda/cusparse/index.html

What is CUSPARSE?

Generally much quicker than writing your own routines.

Tap into GPU experts for difficult problems (e.g. optimizing sparse matrix-

vector multiply)

Automatically handle many aspects of device management, and configuration

Take advantage of performance increases as new (more optimized) library

versions are released.

Reduced code size.

Higher level of abstraction/easier to port/maintain/update.

Why use libraries?

“Inverse Power Method”

Create initial estimate of x: [1,1,1, …, 1] T

DO it =1, niter (number of iterations of main loop – varies with problem size)

 Solve Az = x using CG method (next slide) and return ||r|| (residual)

 zeta = lambda + 1/(xTz)

 Print it, ||r||, and zeta

 x = z/||z||

END DO

CG Benchmark – Main Loop

r = x

rho = rTr

p = r

DO it =1, 25

 q = Ap (SpMV)

 alpha = rho /(pTq)

 z = z + (alpha)(p)

CG Benchmark – CG Loop

 rho0 = rho

 r = r – (alpha)(q)

 rho = rTr

 beta = rho/rho0

 P = r +(beta)(p)

END DO

||r|| = ||x – Az|| (another SpMV)

“The solution z to the linear system of equations Az = x is to be approximated

using the conjugate gradient method”

Identify main data components (A, x, p, r, z, etc.) which need to be resident on

the GPU, and allocate GPU storage for them

After the main data components are initially set up on the host, copy to GPU

Identify key math operations in the code (dot product, matrix-vector multiply,

etc.), and convert to appropriate CUBLAS or CUSPARSE function

Leave most vector and matrix data exclusively on the GPU – no need to copy

data back and forth.

Actual results/convergence indicators (zeta, ||r||) are scalar in nature

Leave most setup, control flow, and reporting functions unchanged

General Porting approach

Summary

Didn’t write a line of GPU “device code”

Overall code size, complexity reduced, and easier to read

Approximate results:

~2x speedup vs. OpenCL version

~3x speedup vs. OpenMP version (4 cores)

~5x speedup vs. Serial version

Where to get help?

Sign up as a registered developer: https://developer.nvidia.com/

Access the NVIDIA community forums: https://devtalk.nvidia.com/

OpenACC: http://www.openacc-standard.org/

StackOverflow:

CUDA: http://stackoverflow.com/questions/tagged/cuda

Thrust: http://stackoverflow.com/questions/tagged/thrust

OpenACC: http://stackoverflow.com/questions/tagged/openacc

https://developer.nvidia.com/
https://developer.nvidia.com/
https://devtalk.nvidia.com/
https://devtalk.nvidia.com/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://stackoverflow.com/questions/tagged/cuda
http://stackoverflow.com/questions/tagged/cuda
http://stackoverflow.com/questions/tagged/thrust
http://stackoverflow.com/questions/tagged/thrust
http://stackoverflow.com/questions/tagged/openacc
http://stackoverflow.com/questions/tagged/openacc

Questions?

